Competitions

進行中的競賽
Hide All

進行中
開始
5/6/2019 7/21/2019
結束
23 萬元(NTD) TOTAL REWARD
1027
TEAMS

吃米要知米價,但身處在台灣各地的你真的知道房價嗎?
不知道也沒關係!一起透過比賽來了解吧!

購買屬於自己的房子,是我們一生中的大事,評估房子的好壞,不僅要考慮房子的大小、屋齡,甚至連附近的生活機能和未來發展性都是一大考量因素。然而在眾多的考量中,什麼才是影響房價高低至關重要的因素呢?

為了讓大家找出影響房價的潛在因子,本次比賽提供公開資訊及部分行內估價資料,希望大家集思廣益,結合AI力量、發揮見微知著的精神,一起朝一流的估價師邁進吧!


預測商品說明

  • 不動產(RE):預測不動產總價
(More)

距離比賽結束

即將開始的的競賽
Hide All

已結束的競賽
Show All

已結束
開始
1/2/2019 3/14/2019
結束
23 萬元(NTD) TOTAL REWARD
1121
TEAMS

對於每間企業而言,顧客的喜好及購買行為一直都是企業關注的議題。而投放的行銷是否有效益,顧客會不會以購買表示支持,也是企業經營的重要生存關鍵。
在科技化的時代,人們習慣用網路瀏覽來探索商品,因此每間企業都努力的在網站上吸引顧客的眼球,期待顧客的買單,但顧客究竟會不會買單,傳統上我們只能事後得知。因此我們就在想,有沒有辦法透過模型進而預測顧客的購買行為呢?
本次比賽提供顧客在玉山官網上120天的瀏覽行為、基本屬性及交易/申請的去識別化行為資料,希望結合群眾智慧,預測顧客在之後的30天與玉山有哪些金融商品的往來。



預測商品說明

  • 信用卡(CC):預測顧客是否申辦信用卡,不論後續是否核卡成功
  • 信託類產品(WM):預測顧客是否以單筆/定期定額的方式,進行信託類產品(包括基金、債券、股票、ETF…)的申購/轉換

【註:申購定期定額基金只會顯示最早申購及轉換的時點,若後面月份只是持續扣款則不會出現在TBN_WM_TXN資料表當中】

  • 信貸(LN):預測顧客是否進件,不論後續是否申貸成功
  • 外匯(FX):預測顧客是否以台幣購買外幣

(More)
已結束
開始
11/5/2018 12/21/2018
結束
20 萬元(NTD) TOTAL REWARD
733
TEAMS
旅行團成行與否取決於是否有足夠量的訂單成立,並且未被取消。但為了保留足夠的彈性維護消費者的權益,現行旅行商品的預約方式不論對客戶與服務提供的廠商(旅行社)一直都存在一個困擾,亦即大量的訂單中有不少訂單最終會被取消。因此,如何能在接到訂單的同時準確的預測該筆訂單是否最終會成行,將可大幅度地降低旅行社的成本,同時也可讓旅行社提供更優質的服務。

本次比賽主要目的是透過旅行社訂單的資料來預測該筆訂單最終是否成行。結合該筆訂單的訂單來源、該訂單所欲購買的旅行商品基本資訊,預測該筆訂單成行的機率。
(More)
已結束
開始
7/23/2018 9/14/2018
結束
20 萬元(NTD) TOTAL REWARD
495
TEAMS

開發新客戶所需要的成本是維護既有客戶的5倍,因此既有客戶的續約金額是企業重要的獲利指標。而掌握影響客戶續約或流失的關鍵,自然成為企業經營的重要課題。

保險商品的規格較複雜,通常無法直接判斷商品好壞。且個別客戶因實際事件而獲得賠償的頻次不一,因此購買之後也不一定有機會親身體驗商品價值。那到底什麼才是既有客戶續購保險商品的關鍵?在此,我們提供跨國產險公司近一年的客戶特徵與續約金額狀況,希望集合各位參賽者的智慧,找出有效預測既有客戶的續約金額模型或方法。

(More)
已結束
開始
4/3/2018 6/22/2018
結束
20 萬元(NTD) TOTAL REWARD
487
TEAMS

股價是否能被預測, 一直存在著正反兩派的觀點。有效市場派認為股價波動是隨機遊走而無法預測下一步會怎麼走, 往那個方向走。然而有效市假說似乎又與現實相悖, 許多研究顯示短期股價的相關性並不為零, 會有動量的存在, 而這是趨勢投資的基石。

因此我們提供參賽者 台灣上市/櫃公司近五年來的歷史每日股價(開盤,最高,最低,收盤)及成交量,希望能集合各位參賽者的智慧來找出預測股價的模型與方法。

參賽者依主辦單位所提供台灣上市/櫃近五年來的歷史每日股價(名目股價與調整股價)及成交量來預測台灣十八檔上市櫃成分證券ETF在下一週五天的漲跌及價格。


標的物

 

  • 國內上市櫃成分證券ETF
    • 共18檔ETF (排除正向2倍或反向ETF)

 

(More)
已結束
開始
1/22/2018 3/23/2018
結束
20 萬元(NTD) TOTAL REWARD
424
TEAMS

惡意程式偵測 (Malware Detection) 一直是資訊安全 (Cyber Security) 十分重要的一個環節,如果能有效偵測出家庭網路或企業網路中的惡意程式,並在程式進行惡意行為之前就阻擋及移除,就可以有效保護使用者的電腦及個人資料等資訊環境的安全。最傳統的防毒 (Antivirus) 是透過惡意程式中特定的程式區塊 (Signature) 來判斷惡意程式,需要資安專家來對惡意程式進行大量分析。最近因為機器學習 (Machine Learning) 的發展,使用機器學習來偵測病毒也成為防毒軟體必備的功能了。

然而傳統方式跟機器學習都需要對惡意程式的原始檔案進行掃描跟分析,當檔案數量及檔案大小很大的時候,就要花費較高的運算資源。所以要善用其他資訊來預判一個檔案的可疑程度,來降低掃描檔案實際所需要運算資源。本次競賽就是希望在不使用原始檔案 (file agnostic) 的情況下,以使用者電腦發現可疑檔案的紀錄,來判斷一個程式是不是惡意程式。

 

(More)
Loading . . .